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1Abstract—A novel approach for pitch track correction and 

music-speech classification is proposed in order to improve the 
performance of the speech segregation system. The proposed 
pitch track correction method adjusts unreliable pitch 
estimates from adjacent reliable pitch streaks, in contrast to 
the previous approach using a single pitch streak which is the 
longest among the reliable pitch streaks in a sentence. The 
proposed music and speech classification method finds 
continuous pitch streaks of the mixture, and labels each streak 
as music-dominant or speech-dominant based on the 
observation that music pitch seldom changes in a short-time 
period whereas speech pitch fluctuates a lot. The speech 
segregation results for mixtures of speech and various 
competing sound sources demonstrated that the proposed 
methods are superior to the conventional method, especially for 
mixtures of speech and music signals. 
 

Index Terms—Source separation, Speech processing, Speech 
analysis, Signal denoising, Noise cancellation. 

I. INTRODUCTION 

In natural environments, various sound sources are mixed 
together when collected by a digital microphone. Human 
listeners are able to focus on a single target source so that 
they can understand what other people are saying even in 
very noisy atmospheres. This phenomenon is called the 
cocktail party effect [1]. The human ability to selectively 
pay attention to a specific acoustic stream is enabled by 
excluding background noise with the help of auditory cues 
in the spectro-temporal domain. The purpose of source 
segregation is to implement the above-mentioned human 
auditory process as accurately as possible in a computed 
environment. 

When a mixture of N source signals is given, the input 
mixture is expressed by: 

)()()()( 2211 txtxtxty NN   , (1) 

where  is the  source signal, and )(txi
thi i  is its gain 

which is affected by various factors such as energy, location, 
and direction. The problem of source segregation is to find 
the best estimates of  using  only. The source 

segregation system is applicable to a variety of tasks 
including automatic music transcription, speech recognition, 
and audio-text alignment 

)(tix )(ty

[2]-[4]. 
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Many researchers have made tremendous efforts to the 
monaural source segregation where the sources are recorded 
by a single microphone. The comb filtering technique 
extracts the target sound from the mixture via a comb-
shaped filterbank whose harmonic structure is built from the 
estimated pitch value [5]. There are a number of methods 
based on masking in the spectro-temporal region, such as 
using the factorial HMM [6] and independent component 
analysis [7]. Nonnegative matrix factorization (NMF) [9] 
based source segregation method split the spectrogram of 
the mixture signal into several components via an iterative 
matrix computation where the redundancy of the source is 
exploited [2]. 

One of the most popular sources in source segregation is 
speech. In order to extract clean speech from various noisy 
environments, amplitude modulation by pitch frequencies is 
proposed [8]. Decent segregation performance was obtained 
with ordinary noise sources, but speech mixed with music 
was not extracted well. NMF based speech segregation from 
polyphonic music extracts vocals from music-vocal mixture 
well but the algorithm cannot separate speech from other 
kinds of noise [10]. 

II. SPEECH SEGREGATION ALGORITHM 

The proposed speech segregation technique is based on 
the classification of segments in time and frequency domain 
as speech or non-speech, and filtering out the non-speech 
segments. The input signal is decomposed into a number of 
subband signals, and the segregation is implemented by 
selectively masking these signals [8]. In the following 
subsections, the subband masking algorithm is introduced, 
and the full procedures for the proposed pitch track 
correction using adjacent reliable pitch streaks and music 
and speech classification are explained. 
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Figure 1. Speech segregation based on subband masking. 
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A. Basics of Subband Masking 

The main idea of subband masking is to decompose the 
mixed signal  into a number of subband signals  

and construct a new source by selectively reweighting the 
subbands 

)(ty )(tbi

[6]. For a single source extraction, it is described 
as follows: 

)()()()()()()( 2211 tbttbttbtts nn   , (2) 

where )(ti  is the separation mask for the subband signal 

, and  is the separated signal of the target source. 

The whole process of the masking is shown in Fig. 1. This 
method is considered to be an inversion of the mixing in 
Equation 1, and the performance is dependent on how 
precisely the subband decomposition splits the input mixture. 
In an ideal case, the mask 

)(tbi )t(s

)(ti  should be mutually 

exclusive. 
Recently, Hu and Wang proposed a speech segregation 

system based on subband masking where the segregation 
mask was modulated by the estimated pitch values, and the 
segregation system demonstrated good performance for 
various simple noise sources [8]. The gammatone filterbank 
is used for the subband decomposition in Equation 2 as it is 
recognized as a good match to the function of the human 
cochlea [11]. The pitch period of a short-time segment is 
estimated from the autocorrelation functions of the subband 
signals, . When a part of the original signal has 

sufficient energy at F0 and harmonics corresponding to the 
estimated pitch, this part of the signal is selected. The 
selected signals are resynthesized into the segregated speech 
using Weintraub’s method 

)(tbi

[12]. 
The estimated pitch may come from either the 

background noise or the target speech. In the system 
proposed by Hu and Wang, the reliability of estimated pitch 
was measured and the reliable pitch streaks which are 
composed of continuous reliable pitch periods were selected. 
The estimated pitch was classified as unreliable if it did not 
belong to the longest reliable streak, and it was corrected 
using the longest reliable streak. In this way, the pitch of the 
background noise can be removed efficiently. 

B. Pitch Track Correction Using Adjacent Reliable Streaks 

When there is no noise in the speech signal, pitch value is 
easily estimated as shown in Fig. 2. However, in noisy 
environment, pitch is not easy to be estimated because the 
autocorrelation function is distorted by the noise signal, 
which is shown in Fig. 3. Therefore, pitch correction error is 
not avoidable. 

Hu and Wang’s pitch track correction algorithm assumes 
that only the longest reliable pitch streak is correct. All other 
pitch periods are recomputed from each end of the longest 
reliable pitch streak until the end or the beginning of the 
input sentence. As a result, the correction error of the pitch 
may propagate from the longest streak. For example, in Fig. 
4-B, a correction error occurs near the longest reliable streak 
and then all pitch periods corrected after this point have 
incorrect values. In order to solve the problem, a pitch track 
correction technique using adjacent reliable pitch streaks is 
proposed. In this method, all reliable pitch streaks are used 
for the correction. 
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Figure 2. Pitch estimation in clean speech. 
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Figure 3. Pitch estimation in noisy speech. 

 
 
The proposed pitch track correction algorithm operates as 

follows: 
 

1) Estimate pitch periods from the mixture signal, and 
find the continuous streaks. 

2) Label each streak as music-dominant or speech-
dominant using the music and speech classification 
algorithm proposed in Section II-B. 
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Although Hu and Wang’s speech segregation system 
works well on simple noises, it is less effective in speech 
and music mixtures. In the estimated pitch of music and 
speech mixtures, both music pitch and speech pitch exist. 
However, it is difficult to discriminate between them 
because music and speech have similar characteristics. The 
music pitch may compose reliable pitch streaks and possibly 
some of them are even longer than any other streak of the 
speech pitch. In this case, Hu and Wang’s method is more 
likely to track the sequence of the music pitch rather than 
that of the speech. 

 
Figure 4. An example of pitch track correction: (A) estimated pitch periods 
and reliable pitch streaks; (B) pitch track correction using the longest 
reliable pitch streak; (C) correction using adjacent reliable pitch streaks; 
(D) hand-labeled pitch periods. 

 
 

3) Find the reliable pitch streaks from speech-
dominant region. The remaining pitch streaks in the 
speech-dominant region are labeled as “unreliable”. 

4) Correct the pitch values in the unreliable pitch 
streaks: 
a) If the unreliable pitch streak has two adjacent 

reliable pitch streaks on both sides, the unreliable 
pitch values are corrected using the longer 
adjacent reliable pitch streak. 

b) If the unreliable streak has only one adjacent 
reliable pitch streak, the unreliable pitch values 
are corrected using the reliable streak. 

c) If the unreliable streak has no adjacent reliable 
pitch streak, all the pitch periods in the streak are 
set to 0. 

 
We used the pitch track correction algorithm proposed in 

Hu and Wang’s method [8]. In the process described above, 
the longer reliable pitch streak is used for correction because 
generally the longer one is more reliable. The unreliable 
pitch in music-dominant region is not corrected as the 
speech pitch in that region is usually difficult to estimate 
and estimation errors may finally affect the whole 
segregation result. 

C. Music and Speech Classification 
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Figure 5. Block diagram of music and speech classification. 
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Figure 6. Example of music and speech classification: (A) estimated pitch; 
(B) continuous pitch streaks; (C) obtained music-dominant regions via 
music and speech classification; (D) remaining speech-dominant regions. 

 
 

The proposed music and speech classification method 
identifies music pitch streaks and excludes music-dominant 
regions. Since music is generally composed of a series of 
notes, the pitch of music generally changes less frequently 
than that of speech [13]. Hence, a variance of continuous 
pitch streaks is used to measure the rate of change in the 
pitch periods. 

Fig. 5 shows the block diagram of music and speech 
classification algorithm. The detailed process of identifying 
music pitch is as follows: 

 
1) Estimate pitch periods from the mixture using the 

autocorrelation function (Fig. 6-A) 
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2) Find continuous pitch streaks from the sequence 
of the pitch periods (Fig. 6-B). 

3) Compute the variance of the pitch periods in each 
streak. If the variance is less than a prescribed 
threshold value, the pitch streak is classified as 
music-dominant (Fig. 6-C); otherwise, the streak is 
classified as speech-dominant (Fig. 6-D). 

 
The music-dominant streaks are excluded from all 

subsequent procedures such as the computation of the pitch 
reliability and resynthesizing the original speech signals. 

 

III. EXPERIMENTAL RESULT 

In order to verify the effectiveness of the proposed 
methods, four different configurations were compared: Hu 
and Wang’s segregation system (“Baseline” in following 
tables), “Baseline” with pitch track correction using adjacent 
reliable pitch streaks (“Correction”), “Baseline” with music 
and speech classification (“Classification”), and with the 
combination of proposed methods (“Both”). Speech data 
spoken by eight different speakers in clean environments 
were selected from the TIMIT speech database. Six types of 
music data from different instruments were used (M1: 
played by piano, drum, and bass; M2: electric guitar, drum, 
and bass; M3: piano; M4: piano; M5: acoustic guitar; M6: 
acoustic guitar). Six types of simple noise data were used 
(N1: 1-kHz pure tone; N2: white noise; N3: noise bursts; 
N4: cocktail party noise; N5: siren; N6: trill telephone) [8]. 
The inputs of the segregation systems were generated by 
mixing one of the eight clean speech signals with one of six 

music or six noise sounds, resulting in 48 (8×6) music-

speech mixtures and 48 noise-speech mixtures. The 
sampling rate of all sound files was 16 kHz, and the mixing 
SNR was set to 0 dB for all mixtures. 

TABLE I shows the SNRs of the segregation results for 
the noise-speech mixtures. Each value in rows 1 through 6 is 
the average SNR for the mixtures of a specific noise and 
eight speech sounds, and the value in the last row is the 
average of all 48 mixtures. In terms of the total average 
SNR, adding “Correction” to “Baseline” is most effective, 
and adding “Classification” slightly lowers the segregation 
performance, although the difference is minuscule. This is 
because the interfering sounds are all simple noises, so the 
proposed music-speech classification has almost no effect. 
TABLE II shows the SNRs for the music-speech mixtures. 
When compared with the results in TABLE I, the Baseline 
performance was significantly worse because the interfering 
sound is music. Each of the proposed methods significantly 
improved the Baseline system. Moreover, combining the 
two methods provided a significant improvement compared 
with using the individual methods alone. 

The segregation experiments for noise mixed speech 
signal with different SNRs are also implemented. Fig. 7 
shows that the proposed system works slightly better than 
Hu and Wang’s system for speech and noise mixtures with 
different SNRs. Fig. 8 shows that the proposed system 
works much better for speech and music mixtures, when 
compared to the results for speech and noise mixtures. 

 

TABLE I. SNRS OF THE SEGREGATION RESULTS FOR SPEECH 
AND NOISE MIXUTRES (DB). THE INPUT SNR IS FIXED TO 0 DB 
Noise No. Baseline Correction Classification Both 

N1 3.39 4.36 3.50 4.07 
N2 3.92 4.59 3.92 4.59 
N3 2.99 3.51 2.70 3.19 
N4 1.67 2.42 1.67 2.42 
N5 3.94 4.31 4.28 4.38 
N6 5.84 6.41 5.47 5.63 

Average 3.62 4.27 3.59 4.05 
 

TABLE II. SNRS OF THE SEGREGATION RESULTS FOR SPEECH 
AND MUSIC MIXUTRES (DB). THE INPUT SNR IS FIXED TO 0 DB 
Noise No. Baseline Correction Classification Both 

M1 -0.70 1.33 1.57 2.64 
M2 1.34 1.90 1.63 2.36 
M3 1.15 1.63 2.04 2.15 
M4 0.72 1.67 1.44 2.01 
M5 0.71 1.89 1.96 2.15 
M6 0.77 2.06 1.29 1.79 

Average 0.66 1.75 1.65 2.18 
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Figure 7. Average SNRs of segregation results for various input SNR levels. 
The inputs are speech and noise mixtures. 
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Figure 8. Average SNRs of segregation results for various input SNR levels. 
The inputs are speech and music mixtures. 

 
 
Hu and Wang introduced two other measures in order to 

evaluate the performance of the segregation systems:  

and  
ELP

ELP

NRP

NRP [8]. “EL” is short for energy loss, and hence,  

indicates the percentage of target speech excluded from 
segregated speech. “NR” stands for noise residue, and  

indicates the percentage of interference included in the 
segregated speech. By definition, both numbers are 
inversely proportional to the segregation performance, 
implying that lower numbers are better. Those numbers are 
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computed by the ratios of the produced segregation mask to 
the ideal binary mask. Let  be the resynthesized signal 

by the segregation system,  be the signal resynthesized 

using the ideal binary mask,  be the resynthesized 

signal present in  but missing from , and  be 

the resynthesized signal present in S  but missing from 

. Then  and  are computed as follows: 

)(tS

)(tI

e )(1 t

)(tI

P

)(tS

)t
)(2 te

(

)(tI ELP NR
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The ideal binary mask is obtained by comparing clean 
speech and noise signal: if the speech has larger energy than 
noise in a part of signal, the ideal mask at that part is set to 
1; otherwise 0. Theoretically speaking, the ideal binary 
mask gives the highest performance that any automated 
segregation system can get. 

TABLE III shows the average  and  for speech 

and noise mixtures, and 
NRP

ELP

P

TABLE IV shows the average  

and  for speech and music mixtures. The input SNRs are 

fixed to 0 dB. In the case of 6 noise signals used in Hu and 
Wang’s work, the maximum difference in  is 12% (N4), 

and the minimum performance gain is 2% (N6), resulting in 
average gain 8%. The  numbers are almost even, 

resulting in the difference of the average numbers by 0.29% 
(9.24%-8.95%). However, in the case of speech and music 
mixtures shown in Table IV, the proposed method is always 
better than the baseline. The maximum and minimum 
improvements are 48% (M1) and 15% (M2), resulting in 
average gain 25%. 

ELP Figure 9. Average PEL and PNR  of segregation results for various input SNR 
levels. The inputs are speech and noise mixtures. 
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TABLE III. THE MEASURED 
EL

(%) AND 
NR

(%) OF 

SEGREGATION RESULT FOR SPEECH AND NOISE MIXTURES. . 
THE INPUT SNRS ARE FIXED TO 0 DB 

Baseline Correction Classification Both Noise 
No. ELP  

NR
 

EL
 

EL
 

ELP     P P NRP P NRP NRP

N1 36.83 3.79 22.17 8.33 32.84 2.37 25.15 6.25 
N2 34.32 5.51 23.70 2.77 34.32 5.51 23.70 2.77 
N3 29.07 28.57 16.36 29.87 36.24 21.39 22.86 28.10 
N4 60.21 14.73 48.31 6.40 60.05 14.50 48.31 6.40 
N5 31.69 2.53 24.24 9.57 25.27 2.54 26.44 4.44 
N6 15.52 0.30 10.41 0.51 18.13 0.29 13.41 5.74 

Avg. 34.61 9.24 24.20 9.57 34.47 7.77 26.65 8.95 Figure 10. Average PEL  and PNR  of segregation results for various input 
SNR levels. The inputs are speech and music mixtures.  

 TABLE IV. THE MEASURED 
ELP (%) AND 

NR
(%) OF 

SEGREGATION RESULT FOR SPEECH AND MUSIC MIXTURES. 
THE INPUT SNRS ARE FIXED TO 0 DB 

P
 
We also compared the segregation results with various 

SNR levels. Fig. 9 and 10 shows the average  and  

in percent (%) for six noises and six music signals, with 
varying mixing SNR levels from -5 dB to 10 dB.  In the case 
of speech and noise mixtures shown in Fig. 9, the 
performance improvements in  are about 0~10%, and 

almost no difference in . However, in the case of music 

ELP NRP

ELP

NRP

Baseline Correction Classification Both Noise 
No. ELP  

NRP  
ELP  

NRP  
ELP  

NRP  
ELP  

NRP  

M1 95.51 92.71 53.67 42.76 63.97 7.95 47.73 7.66 
M2 69.18 15.37 62.21 13.65 64.14 15.51 54.81 12.74 
M3 72.63 20.89 64.50 12.78 57.48 6.17 56.07 7.73 
M4 74.03 38.39 45.58 35.51 65.41 16.71 48.18 21.70 
M5 77.47 53.07 54.53 29.87 58.51 20.01 54.14 13.02 
M6 74.60 31.72 50.38 24.92 64.36 22.58 54.36 23.56 

Avg. 77.24 42.02 55.15 26.58 62.31 14.82 52.55 14.40 
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mixtures shown in Fig. 10, the improvements in both  

and  measures are 10%~20% for all mixing SNR levels. 

These results show that our proposed methods are very 
effective in speech segregation, especially for the speech 
and music mixtures. 

ELP

NRP

IV. CONCLUSION 

We presented the pitch track correction and the music and 
speech classification techniques in order to improve the 
performance of the speech segregation system [8] for speech 
and music mixtures. The proposed pitch track correction 
method uses all reliable pitch streaks instead of the longest 
one to improve the accuracy and robustness of the pitch 
track correction. The proposed music and speech 
classification is based on the property that music signals 
generally have relatively stationary pitch when compared 
with that of speech. The combined system demonstrated 
significantly better segregation performance for speech and 
music mixtures than Hu and Wang’s method, and the 
performance for speech and noise mixtures was also 
compromisable. Future work includes analyzing the 
characteristics of more complicated types of music and 
natural sound sources. 
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